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1. SUMMARY
This paper reviews work accomplished and in progress at are computed by means of a filtering scheme cleverly
NASA Ames relating to visual target detection. The focus is designed to be a pyramid transform. The transform domain
on image discrimination models, starting with Watson's amplitude is quantized according to a nonlinear just-
pioneering development of a simple spatial model and noticeable-difference scale to provide automatic image
progressing through this model's descendents and extensions. compression [3]. This nonlinear scale provides a masking
The application of image discrimination models to target mechanism. If the background image has raised the amplitude
detection will be described and results reviewed for level of a transform coefficient before a signal is added, the
Rohaly's vehicle target data and the Search 2 data. The paper signal amplitude must be larger to cause a just-noticeable
concludes with a description of work we have done to model increase in the coefficient amplitude. The image quality
the process by which observers learn target templates and metrics of Daly [4] and Lubin [5] are close decendents of this
methods for elucidating those templates. model. Watson also developed a version of the model that is

much more computationally efficient by using the Discrete
Cosine Transform as a crude approximation of the Cortex

Keywords: target detection, image discrimination models, Transform [6].
video quality metrics, target template learning, response
correlation images, Cortex Transform, Discrete Cosine 3.3. Masking from other "cortical units"
Transform, Minkowski summation

Foley [7] has shown that not all masking can be explained by

2. INTRODUCTION the nonlinear response of simulated cortical units using
psychophysical measurements of Gabor targets masked by

The vision research laboratory at NASA Ames Research gratings of different frequencies and orientations. Watson and
Center has developed a number of image discrimination and Solomon [8] developed an image discrimination model where
video discrimination models. Although these models are not units neighboring in space, spatial frequency, and orientation
themselves models for the search and detection of targets in contribute to a divisive inhibition of each other. This model
complex scenes, they can be used to estimate the visibility of a returned to Gabor-shaped receptive fields for the original
target in a fixed, unchanging background. For some linear filters, taking advantage of the increased speed of new
applications, this task may be a useful simulation of the computers and ignores image reconstruction from the visual
detection task. Also the visual representation components of representation.
the models may be taken out and incorporated in more
complete models of the search and detection situation. 3.4. Simplified Models

An image discrimination model takes as input a pair of images The increased complexity of the models with between-unit
and gives as output a number relating to the probability that masking lead us to try models that used a simple global RMS
the observer will be able to discriminate the difference contrast to provide the masking [9]. Although this model is
between the two images. In our models each image is easily shown to be wrong in detail because it lacks selectivity
converted to a visual representation and then the difference in position and spatial frequency, it can provide surprisingly
between the two visual representations is aggregated using a good approximations to standard masking results. A slightly
Minkowski summation index. Differences among our models more complex version of the model was contructed to allow
mainly result from different visual system representations. for background images that are not constant in luminance and

RMS contrast [10].

3. MODEL REVIEW 3.5. Image Sequence Discrimination Models

3.1. Watson' s Simple Spatial Model A sophisticated detection model will base its visual
representation on the spatio-temporal retinal signal. Our labs

The first true image discrimination model was developed by have developed two discrimination models for video
Watson [1]. The basic element of the model was the linear sequences. One is a temporal extension of the DCT-based
sensor element with a Gabor receptive field similar to that of a image model [11]. The other is an extension of the simplified
simple cell in primary visual cortex. These cells were model for non-homogenous backgrounds [12]. Both use
assumed to occur in quadrature pairs and to be arranged in recursive filtering in the time domain. The second model [11]
layers of units that were self-similar, but spaced 1 octave apart keeps separate representations for a "parvo" channel (high
in spatial frequency. Because the sampling was spatial resolution, low temporal resolution) and a "magno"
approximately adequate to represent all the pictures in the channel (medium spatial resolution, high temporal resolution).
image, when euclidean distance was used as the summation
exponent and the model was space-invariant, its predictions
were the same as any single linear filter model with the same 4. DISCRIMINATION MODEL APPLICATION
contrast sensitivity function.

4.1. Previous Results

3.2. Watson' s Cortex Transform Model
The next major advance in image discrimination models was Rohaly, Ahumada, and Watson have compared several
Watson' Cortex Transform model [2]. The basic elements of discrimination models or metrics on their ability to predict
this model are still linear orientation selective filters, but they target detection performance in natural backgrounds [13]. The

target detection task had several simplifications from realistic

Paper presented at the RTO SCI Workshop on "Search and Target Acquisition", held in Utrecht,
The Netherlands, 21-23 June 1999, and published in RTO MP-45.
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detection tasks that made it suitable for the discrimination
m odels. There was no search com ponent to the task. the 14-. ser •,. L~ t •xy , odel d Y ,-
target if present was in the center of the image. For each
target image a matched background image was made by Sed,r Lt,,-y
replacing the target with a plausible section of background 22.
carefully blended with the original background. A 2.2'
discrimination experiment was run with the same 421

monochrome, lower-resolution images that were given to the
discrimination models. It showed that tile detectability of the
targets in the detection experiment, with different targets 44

intermixed, was closely correlated to the discriminability of 30

the reduced images with each target/no-target pair considered 1.4
separately. Because of this, any visible difference between the 2,

images could be used as a basis for the detection. 3,, 30

Six models were tested. The first three were: I) the 2.3

difference between the images in the digital domain, 2) the 4
difference between the images in the luminance contrast 31
domain, contrast sensitivity filtered, 3) the Cortex Transform
model (with a nonlinear amplitude transformation to provide .0 0 P l0

within-unit masking). The next three were those model 3.
outputs normalized by a global contrast measure. For 4) the , 1

global contrast measure was simply the variance of the 33
background image digital values. For 5) and 6) the contrast -0 '0 40 Mok'
measure was the RMS contrast of the background luminance Figure 1
contrast image filtered with the contrast sensitivity function of'
the model. Figure 1 shows the ranks of the mean search latencies lor the

The results were easy to remember. The order of tie models, 44 signal images as a fumction the raiks of the model I's. The
best to worse, with < meaning significantly better and= correlation coefficient for these ranks is 0.807, showing that
meaning theroim eaninglh significantl better3< .athis simple masking model predicts much of the variation inmaigapproximately the same, was 4=5=6<3<1=2.
Basically, the key to good model performance was masking. the search latencies.
The two measures with no masking were the worst, the Cortex This good performance is seen despite the fact that the model
Transform model with within-unit masking was better, and does not take into account (I) color differences, (2) target
any model with a global masking index was even better. position. (3) ob•ect contours. or (4) texture differences.

These results, and the results of some fixed noise masking The model does define and effectively combine (I) target size,
studies with sinnlated airplane targets on runw\ays, were the (2) target contrast, and (3) background contrast variability.
impetus for the development of the simplified model for It should be repeated that this is not a model of target
nonhomnogeneous backgrounds [ 10]. detection. The hard part of the detection process was

accomplished by the processes of limiting the image to the
4.2. Search 2 Results target region and replacing the target by a simulated

background. For its simplicity, however, the model does a
The single filter model with global masking was presented good job of capturing target visibility.
with small cut-outs of gray scale versions of the 44 Search 2
target images, together with matching versions with the Two directions of improvement of this model are suggested.
targets removed [14]. One is the addition oficolor. The other is a nmodel that

includes eccentricity. The model may have been improved by
The first step in the model calculations was to convert the the poor color discrimination of the periphery. Also, in
images from digital gray scale, g, to luminance. Y, using the previous work with central targets \we always found that a
equation: Minkowski distance with an exponent of 4 fit better than
Y = 64.32((g- 18)/(1 09.22+g- 18))^2.3 . Fuclidean distance. but for this data the liuclidean fit is better.This also may be a feature of peripheral search rather than
Next the images wvere converted to luminance contrast. C. foveal detection.

using 1.0, the mean luminance of the image with the target

removed.

C = Y/L0 - 1. 5. TARGET TEMPLATES

The images were then filtered with a Difference-of-Gaussians
contrast sensitivity filter. The center Gaussian had a spatial 5.1. Fixed Noise vs. Random Noise Masking
spread (1/e half width) of 2 arc minutes. the surround spread Because we were interested in predicting detection
was 16 arc minutes, and the ratio of the surround volume to performance in the presence of random noise, we have
the center volume was 0.685. The filter was normalized to collected data comparing the relative effectiveness of random
have a peak gain of unity in the frequency domain. The noise maskers and the fixed noise maskers that out image
discriminability d' of the images is then estimated by the discrimination models are designed to predict 1141. A
Euclidian distance between the filtered images. d, normalized traditional signal detection approach to this problem predicts
by the Root-Mean-Square contrast of the filtered background that random noise w\-ill be a stronger masker and that the
image, c0. di fference should essentially depend on the ratio of the

d' = s d (1 + (c0/c2)^2)^0.5 . variability in the internal detection measure due to variability
in the external noise to the internal variability in tile measure

The parameter c2 is the masking threshold in contrast units when the toose is held constant. lhis internal variability was
and was set to 0.05. The sensitivity parameter s was set to measured by Burgess and Colborne 1171 for visual detection
give a contrast sensitivity of 114 for a filtered signal with in noise by using the same noise oin both intervals of a two-
constant unit contrast over an area of one square degree. interval-forced-choice experiment. We call this mlelhod the

twin noise method.
The interesting result comes froml the comparison of twin
noise xvith fixed noise. The standard models predict similar
performance, but we find that fixed noise masking can be
much less than twin noise masking 1171.
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Morreale, ed., Society for Information Display Digest of
5.2. Template Learning Models Technical Papers (Santa Ana, CA), 29, Paper 40.1.

To explain why fixed noise masking can be much less than 11. A. B. Watson, J. Q. Hu, J. F. McGowan III,& J. B.
twin noise masking we have developed models for template Mulligan (1999). Design and performance of a digital
learning [18]. The basic idea is that in the fixed noise video quality metric. In B. E. Rogowitz and T. N.
situation the observer is learning a template in a less variable Pappas, eds., Human Vision and Electronic Imaging IV,
situation, reducing the internal noise caused by variations in SPIE Proceedings, 3644, Paper 17.
the template caused by the learning process itself. Another 12. A. J. Ahumada, Jr., B. L. Beard, R. Eriksson (1998).
benefit of the fixed noise situation is that the template Spatio-temporal discrimination model predicts temporal
incorporates the fixed noise and reduces the spatial masking functions. SPIE Proceedings, 3299, Paper 14,
uncertainty in the detection process. pp. 120-127.

13. A. M. Rohaly, A. J. Ahumada, Jr. & A. B. Watson
5.3. Template Identification Methods (1997). Object detection in natural backgrounds

predicted by discrimination performance and models.
A final research area that may be of interest to those trying to Vision Research, 37, pp. 3225-3235.
model target detection is our development of methods for
identifying the features of the target that the observer is 14. A. Toet, P. Bijl, F. L. Kooi, J. M. Valeton (1998). A high
looking for. We add noise to the images in detection or resolution image data set for testing search and detection
discrimination tasks and correlate the noise pixels with the models.TNO Report TM-98-A020, TNO Human Factors
responses of the observers [19]. If the observer features are Research Institute, Soesterberg, The Netherlands.
linear in the image pixel values, images of those features 15. A. J. Ahumada, Jr., B. L. Beard (1997). Image
appear. If nonlinear features are used, the search is more discrimination models predict detection in fixed but not
tedious, but still possible [20]. random noise. Journal of the Optical Society of America

A, 14, 2471-2476.

16. A. E. Burgess, B. Colborne (1988). Visual signal
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